Worksheet for 2021-09-15

Conceptual questions

Question 1.

(a) Warmup: Find a function $f(x)$ such that $f(0)=3$, $f^{\prime}(0)=2$, and $f^{\prime \prime}(0)=4$.
(b) Now onto MVC: Find a function $f(x, y)$ such that

$$
\begin{aligned}
f(0,0) & =3, f_{x}(0,0)=-2, f_{y}(0,0)=0 \\
f_{x x}(0,0) & =7, f_{x y}(0,0)=-8, f_{y y}(0,0)=3
\end{aligned}
$$

Question 2. Let $f(x, y)$ and $g(u, v)$ be two functions, related by

$$
g(u, v)=f\left(e^{u}+\sin v, e^{u}+\cos v\right)
$$

Use the following values to calculate $g_{u}(0,0)$ and $g_{v}(0,0)$ (not all of the below values may be relevant!).

$$
\begin{array}{llll}
f(0,0)=3 & g(0,0)=6 & f_{x}(0,0)=4 & f_{y}(0,0)=8 \\
f(1,2)=6 & g(1,2)=3 & f_{x}(1,2)=2 & f_{y}(1,2)=5
\end{array}
$$

Computations

Problem 1. Suppose that S is a (nice, differentiable...) surface which contains the two curves

$$
\begin{aligned}
\mathbf{r}_{1}(t) & =\left\langle 2+3 t, 1-t^{2}, 3-4 t+t^{2}\right\rangle \\
\mathbf{r}_{2}(u) & =\left\langle 1+u^{2}, 2 u^{3}-1,2 u+1\right\rangle
\end{aligned}
$$

Using this information, compute an equation of the tangent plane to S at the point $P(2,1,3)$.
Problem 2. The intersection of the plane $x+y+2 z=2$ intersects the paraboloid $z=x^{2}+y^{2}$ in an ellipse C. Find the tangent line to C at the point $(-1,-1,2)$.
Problem 3.
(a) Suppose that $\mathbf{r}(t)=(x(t), y(t))$ is parametrized by arclength (recall that this means $\left|\mathbf{r}^{\prime}(t)\right|=1$; the particle is "moving at speed 1 "). Show that the directional derivative of f in the direction of $\mathbf{r}^{\prime}(t)$ is equal to $\frac{\mathrm{d}}{\mathrm{d} t}(f(\mathbf{r}(t)))$. Hint: Use the chain rule.
(b) Consider the function

$$
f(x, y)=\cos ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right)
$$

Using the preceding part, compute $f_{y}(1,0)$. Hint: Use the unit circle.
Problem 4. Fix a nonnegative real number a and consider the function

$$
f(x, y)= \begin{cases}\frac{(x+y)^{a}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

For what choices of a is the function f continuous?

